
1

SHEF Decoder Operations Guide
National Weather Service

Office Of Hydrologic Development
September 8, 2000

Table of Contents

1. INTRODUCTION

2. INPUT/OUTPUT DATA

3. APPLICATION CONTROLS

4. OVERALL PROGRAM PROCESSING

5. SHEF DATA POSTING PROCEDURE

6. NEW FEATURES IN AWIPS RELEASE 5.0

APPENDIX A. SHEF DECODER POSTING LOGIC DIAGRAM

APPENDIX B. SHEF DECODER DATA FLOW DIAGRAM

APPENDIX C. FORMAT OF PERFORMANCE LOG FILE

2

1. INTRODUCTION

The SHEF Decoder is the primary means by which hydrometeorologic data are inserted into
the Integrated Hydrologic Forecast System (IHFS) database. The application can be thought
of as having three components:

1) A decoder/parser which reads the SHEF-encoded data and translates the data
into a general form, where each data value has an associated set of attributes,
such as the physical element it represents and the time of the value.

2) A database poster which reads this general form and writes the data value to
the proper tables within the IHFS database.

3) A controlling function (i.e. driver) that controls the invocation and sequencing of
these two activities.

This document describes the operational aspects of the poster and the driver operations of
the SHEF Decoder implemented with the IHFS database; it does not discuss other versions
of the SHEF Decoder which post their data to other destinations. Also, it does not discuss
the actual parsing and decoding of the SHEF-encoded data. That is described in detail in
the WHFS Standard Hydrometeorological Exchange Format (SHEF) Version 1.3 manual,
dated March 1998.

First, a brief description of the input and output data sets is given in Section 2. The input
data includes a set of switches and options in the form of application token variables. Each
of the tokens are described in Section 3. The overall program processing is described in
Section 4, while the detailed processing performed on each product is described in Section
5. Both the overall and product processing are controlled in part by the token settings
described in Section 3.

The AWIPS version of the SHEF Decoder that this document applies to is AWIPS Release
5.0. Most of the features described herein also apply to AWIPS Release 4.3.x; the changes
that were implemented for Release 5.0 are described in Section 6.

3

2. INPUT/OUTPUT DATA

The following data sets serve as input to the SHEF Decoder application:

1) SHEF-Encoded Products - Text files containing the actual SHEF-encoded data
to be decoded, processed, and posted to the database. These files are
contained in the directory defined by the application token shef_data_dir
(tokens are discussed below). A special file, called a stop file, may also be
located in this same directory. When present, this file directs the application to
cease execution.

2) SHEF Application Settings - A collection of tokens and their settings, which are
defined in text files referred to as application defaults (Apps_defaults) files.
These token values are expected to change rarely once they are configured for
a particular office. Tokens are described in a later section of this document.

3) SHEF Parameters - A text file containing the recognized values of the SHEF
attributes associated with each value; e.g. the allowable SHEF physical
element codes. This file is provided with the application and is not expected to
change. Its name is SHEFPARM and it is contained in the directory defined by
the application token shefdecode_input.

4) IHFS Database - The IHFS database is a relational database implemented in
the Informix database environment provided on AWIPS workstations. The
database contains assorted switches associated with a given station or area
that control how the decoded SHEF information should be processed by the
SHEF Decoder.

The following data sets are generated by the SHEF Decoder application:

1) IHFS Database - The IHFS database receives the decoded data and
represents the primary output of the SHEF Decoder. The data are organized in
the IHFS database based on the SHEF attributes of the data, i.e. the SHEF
physical element, duration, type-source, duration, and extremum values, in
addition to the station identifier and the time of the data, and possibly the
forecast issuance time.

2) Decoded Output - A binary file, for temporary use, that contains the decoded
general form of the SHEF data file. It is generated by the parser component of
the application and is read by the posting component. After each product’s
data are posted, this file is removed. This file is named SHEFOUT, and is
stored in the same location as the SHEF-encoded data files.

4

3) Daily Program Logs - A text file containing a running daily log that summarizes
the application processing. For each product, about a dozen lines are written
to the log file which summarize the product processing. Also, whenever the
application is started, it writes the values of the control settings it has read to
the log file. The log files are named shef_decode_log_MMDD, where MMDD is
the month-day, and are contained in the directory defined by the application
token shef_decode_log.

4) Product Logs - A text file containing a log that provides a detailed summary of
the processing of a single product. This log contains a copy of the input SHEF-
encoded data; any errors that may have occurred during the parsing process
are written immediately after the line in the product that caused the error. It
also includes information regarding the posting operations performed on the
data and the same summary information that is logged to the daily log file. The
log files are named PRODUCTID.MMDD.HHMMSS, where PRODUCTID is the
product id and MMDD and HHMMSS, are the month-day, and hour-minute-
seconds of the product as read from the product header. These files are
contained in the directory defined by the application token shef_error_dir.

5

3. APPLICATION CONTROLS

The SHEF Decoder application uses a set of application controls, referred to as tokens, to
control the processing within the application. For each token, the program looks in up to four
“places” to read the value of the token. The four places are the environment variable domain
of the operating system shell and three sets of files, which contain a set of tokens and their
values, and are referred to as application defaults files. The name and location of these
three application defaults files are themselves defined by environment variables specified in
the application’s start script. The SHEF Decoder application, like all applications that use
tokens, determines each token’s value by looking in four places in the following hierarchal
fashion.

1) First, a check is made to see if an environment variable matching the token
name is defined in the shell environment. If so, then this gives the token’s
value.

2) If not defined, the file defined by the environment variable
APPS_DEFAULTS_USER is searched. If the file contains the token, then its
value is used.

3) If not defined, then the file defined by APPS_DEFAULTS_SITE is searched. If
the file contains the token, then its value is used.

4) If not defined, the file defined by APPS_DEFAULTS, which represents the
nationally defined token values, is searched. If the file contains the token, then
its value is used.

If the token value is still not found, then program uses a default value defined internally, if
appropriate.

A description of each of the tokens used within the SHEF Decoder application is given
below. The tokens are grouped by their general functional category. The default value
shown is the program default; it is NOT the value specified in the national application tokens
file! For a detailed presentation of how many of these tokens impact the processing in the
SHEF Decoder, refer to Section 4.0 and Section 5.0.

Note that some of these tokens play a significant role in the speed of the SHEF Decoder.
Specifically, the settings of the duplicate data processing tokens and posting destination
tokens can greatly affect the performance of the application by possibly requiring more data
to be posted than is necessary. For these tokens, consideration should be made when
setting the token value. Where appropriate, a brief mention of performance impacts is given
with the token description below.

6

Database tokens:

db_name

Name of the database to which the shefdecode poster will write data. The name has
the form: hd#_#xxx, where #_# is the database version number, and xxx is the office
identifier.
Default = N/A

server_name
Name of the database server, typically set to ONLINE.
Default = N/A

Directory location tokens:

shefdecode_input
Directory location of input SHEF parameter file. This is normally defined as
/awips/hydroapps/shefdecode/input
Default = N/A

shef_data_dir
Directory location of input SHEF-encoded products. This directory may also contain
the special stop file. The location is normally defined as /data/fxa/ispan/hydro
DEFAULT = N/A

shefdecode_log
Directory location of the daily log files, which is normally set to
/awips/hydroapps/shefdecode/logs/decoder
Default = N/A

shef_error_dir
Directory location of the product log files, which is normally set to
/awips/hydroapps/shefdecode/logs/product
Default = N/A

Logging tokens:

shef_keeperror
Controls the dispensation of the product log files.

ALWAYS = Keep product log files always.
IF_ERROR = Keep product log files only when errors or warnings occur.
Default = ALWAYS

7

dupmess
Specifies whether to log messages in the product log files about duplicate data, which
can occur if a value is sent for a location, time, etc. for which a value already exists.

ON = Log messages about duplicate data.
OFF = Don’t log messages about duplicate data.
Default = ON

locmess
Specifies whether to write messages in the product log file about stations and areas
not defined as either a location or as an area, such as a basin, county, or zone.

ON = Log messages about undefined locations.
OFF = Don’t log messages about undefined locations.
Default = ON

elgmess
Specifies whether to write messages in the product log files about the posting
“eligibility” of a known location’s value. The “eligibility” refers to whether the specific
type of data for the given location’s data should be posted.

ON = Log messages about the station eligibility not being satisfied.
OFF = Don’t log messages about the station eligibility.
Default = ON

shef_perflog
Controls whether the performance logging feature is enabled. When enabled, the
decoder will create a separate log file that tracks the timing of selected operations
within the decoder for the purpose of monitoring performance. The information is
written to the file shef_perf.log which is located in the directory defined by the token
shefdecode_log. This feature should be used only if necessary because the logging
of the performance information itself has an effect on the performance. A line is
written to the file for each record that is processed. Therefore, this file can grow to be
quite large if the application is running for an extended period. When the application
restarts, this file is overwritten, so remember to rename the file if later analysis is
desired. This feature is intended for use by knowledgeable operators only. Appendix
A gives the format of the performance log file.

ON = Enable performance logging.
OFF = Disable performance logging.
Default = OFF

8

Processing tokens:

shef_sleep
Specifies how long the application should wait, in seconds, after processing all the
input SHEF-encoded data files, before looking to see if any new product files have
arrived.

Default = 10

Data Time Window tokens:

shef_winpast
Specifies how many days in the past observed data will be accepted. Data for times
before this number of days prior are rejected.

Default = 10

shef_winfuture
Specifies the number of minutes in the future, relative to the current time, that time
stamp of observed data can have for the data to be posted.

Default = 30

Duplicate Data Processing tokens:

shef_use_revcode
Indicates whether the poster should consider the SHEF revision code when a value
has a duplicate record already in the database. The revision code can be encoded as
part of the SHEF encoded information, using the “.AR”, “.BR”, or “.ER” feature of
SHEF.

0 = Consider the revision code when deciding whether to overwrite duplicate data.
If the revision code is not set on the new data, then the data is not replaced,
unless the token vl_always_overwrite is set to ON. The token
vl_always_overwrite is still supported for this release of the SHEF Decoder,
although it is considered obsolete.

1 = Do not check the revision code which may be defined for the data; i.e. always
overwrite duplicate data. This setting may result in unnecessary database
writes, which can slow processing. Note that despite the name of the token, a
value of 1, which is typically the value for TRUE, means do NOT use (i.e.
ignore) the revision code.

Default = 0

9

vl_always_overwrite_flag
Specifies whether the application should override the settings of the revision code, and
overwrite all data regardless. This token is considered obsolete as the same behavior
can be achieved by setting the token shef_use_revcode to a value of 1.

ON = Always overwrite existing data value.
OFF = Use the shef_use_revcode token setting and the data revision

code to control overwrites
Default = OFF

Posting destination tokens:

shef_post_unk
Specifies how data for unknown, i.e. undefined, stations are processed.

NONE = Do not post any information to the database regarding undefined
stations. This setting results in the fastest performance.

IDS_ONLY = Post only the location identifiers for undefined stations and only
store basic information related to the latest product which
contained the undefined station.

IDS_AND_DATA = Post all data from unknown stations. This setting results in the f
slowest performance but allows for full monitoring of data from
undefined stations.

Default = NONE

shef_load_ingest
Specifies whether the application will automatically create a record in the IngestFilter
table containing the station-PEDTSE combinations of entries considered for
processing. To be considered by the data poster component of SHEF Decoder, first it
checks that the station is defined. If it is, then it checks that the SHEF physical-
element, duration, type-source, and extremum attributes are defined (PEDTSE) in the
IngestFilter table. If it is, then the value is processed. If not, then this token value can
be used to automatically have the location-PEDTSE entry created, and have the
station considered by the data poster.

ON = Load the location-PEDTSE entry to the IngestFilter if needed.
OFF = Don’t load the entry to the IngestFilter.
Default = ON

10

shef_storetext
Specifies whether the raw SHEF-encoded product should be written to the TextProduct
table, which keeps only the latest number of products for a given product identifier, as
controlled by the user.

ON = Post raw encoded SHEF text products, which can be reviewed later.
OFF = Don’t post the products. This setting results in the fastest performance.
Default = OFF

shef_post_baddata
Specifies how data which fails the certainty quality control checks should be posted.
This control settings only effects data which has failed the certainty quality control
check, not data which are tagged as questionable. A data which has failed a
“certainty” check is considered to be “bad” with certainty, and some offices may prefer
that this data be separated from data that is not considered bad. Data fails the
certainty check if it fails the gross range check or if the SHEF qualifier code is set to R
(rejected) or B (bad).

REJECT = Post failed data to the RejectedData table. This has the effect of
removing the data from future consideration, although rejected data can
be manually returned to the applicable physical element tables.

PE = Post failed data to appropriate physical element table. This results in the
data being co-mingled with the valid data, although its quality code is still
marked as bad.

Default = PE

shef_procobs
Specifies whether SHEF “processed” data is treated as observed data. SHEF
processed data refers to data which has the first letter of the SHEF type-source code
set to “P”.

ON = Post SHEF processed data values to the observation physical element
data tables and treat them in every way like they are observed data.

OFF = Post to the ProcValue table, which is a table dedicated to storing SHEF
processed data only. SHEF processed data are not further stored
according to their physical element, as is the case with SHEF observed
data.

Default = OFF

11

shef_post_obsval
Specifies whether observed data, denoted by having the first letter of the SHEF type-
source code set to “R”, is stored in the ObsValue table, in addition to being stored in
the appropriate physical element table. Because all the fields in the ObsValue table
are provided in the physical element tables as of AWIPS Release 5.0, the ObsValue
table is considered obsolete, in addition to being redundant. It is expected that this
table will be removed in the next Release.

ON = Post data to the ObsValue table.
OFF = Don’t post to the ObsValue table. This setting results in the fastest

performance.
Default = OFF

shef_post_fcstval
Specifies whether forecast data, denoted by having the first letter of the SHEF type-
source code set to “F”, is stored in the FcstValue table, in addition to being stored in
the appropriate physical element table. Because all the fields in the FcstValue table
are provided in the physical element tables as of AWIPS Release 5.0, the FcstValue
table is considered obsolete, in addition to being redundant. It is expected that this
table will be removed in the next Release.

ON = Post data to the FcstValue table.
OFF= Don’t post to the FcstValue table.
Default = OFF

shef_post_latest
Specifies whether to check each observed value, and if it is the latest value for the
given location and data attributes, store the value to the LatestObsvalue table.

ON = Post data to the LatestObsValue table, even if it failed the
certainty quality control check.

VALID_ONLY = Post data to the Latest ObsValue only if the value passes the
certainty quality control check.

OFF = Don’t post data to the Latest ObsValue table. This setting results
in the fastest performance.

Default = OFF

12

shef_post_link
Specifies whether to store information in the ProductLink table noting that the given
location was contained within the associated product. The value and its associated
data are not stored in the table, only information that denotes the linkage between the
location and the particular product instance.

ON = Post data to the ProductLink table.
OFF = Don’t post data to the ProductLink table. This setting results in the

fastest performance.
Default = ON

shef_alertalarm
Specifies whether the program should check whether the values exceed pre-defined
alert and alarm levels. Only single values are checked against the threshold values;
no rate-of-change checking is performed.

ON = Perform alert and alarm checking on the data
OFF = Don’t perform alert and alarm checking. This setting results in the fastest

performance.
Default = OFF

shef_load_maxfcst
Specifies whether the program should update the RiverStatus table with the maximum
forecast data at the conclusion of processing a product that contained at least one
forecast stage or discharge value. This information is used in WHFS applications to
monitor river conditions.

ON = Update the RiverStatus table.
OFF = Don’t update the RiverStatus table. This setting results in the fastest

performance.
Default = OFF

13

4. PROGRAM PROCESSING

This section summarizes the high-level operations of the SHEF Decoder, described in a
sequential manner. The operations are listed in an ordered fashion.

1) Retrieve values of the application environment variables from the .Apps_defaults
file(s). The token values control major aspects of the data posting process and also
control the impact on the SHEF Decoder operations is also discussed later. A list of
these tokens is given earlier in Section 3., with a description and their default value, if
one exists.

2) Open the SHEF parameter input file. This file contains information used by the parser
to identify the valid SHEF attribute codes. It is named SHEFPARM and is located in
the directory specified by the token shefdecode_input.

3) Open the SHEF daily log file. This file is located in the directory specified by the token
shefdecode_log.

4) Open the Informix database. This opens a database on a database server, both of
which are specified in the .Apps_defaults file by the token db_name and server_name,
respectively. The database is opened once and is expected to remain accessible by
the application.

5) Check for any SHEF encoded files in the input directory defined by the token
shef_data_dir. Any file in the directory, except for a few special named files, are
assumed to be SHEF encoded. The files in the input directory need not follow any
special naming convention. Only regular files are considered, i.e. directory files are
not considered.

When assembling the list, certain files are ignored, namely the SHEF parser output file
(SHEFOUT), the SHEF stop file (stop_shefdecode), the file list file (files.list), which
contains the list of files to consider from the previous directory query, and the SHEF
process identifier file (shef_pid.dat), which is used by the start script to try and prevent
multiple instances of the SHEF decoder from operating on the same directory.

A list of files to process is assembled. For each item in this list, the following
processing occurs.

5.1) Open the input file and open the SHEFOUT output file. If either open fails,
discontinue processing on the file.

5.2) Read the header information in the SHEF input file. This includes the product
identifier and the product date and time. If the product identifier is missing, the

14

value of MSGPRODID is assigned. The date and time read from the product
gives only the day-of-the-month, and the hour and minute. The year and month
are assigned from the system clock. If the date and time cannot be read from
the product, the values from the system clock are assigned.

5.3) Open the product log file associated with the particular product. The name of
this log file is based on the product identifier and time and is located in the
directory specified by the token shef_error_dir.

5.4) Parse the encoded information in the SHEF input file. The decoded information
is written to the SHEFOUT output file.

5.5) The first time the parser is invoked, read then close the SHEF parameter input
file. This task is only performed once even though it is an item within Step 5,
and Step 5 is repeated.

5.6) Read the decoded information that is stored in the SHEFOUT file and post the
information into Informix database. The posting process follows a detailed
sequence of steps that are described in Section 5.

5.7) Close and remove the SHEF input file.

5.8) Close and remove the SHEFOUT output file.

5.9) Close the product log output file.

5.10) Check for existence of a stop file. If one exists then abort application. This
closes the database and daily log output file.

Repeat step 5) operations to process any additional SHEF input files.

6) Check for existence of a stop file. If one exists then abort application. This closes the
database and the daily log output file.

7) Suspend program execution for duration specified by the token shef_sleep. After this
pause, continue.

8) Check the current time and if the date has changed in reference to the date of the
daily log file, then close the existing log file, and open a new daily log file.

Return to step 5) and processes any files in the input directory. Repeat steps 5-8 indefinitely.

15

The daily log files and the product log files are eventually purged from the file system by a
purging process that is scheduled to run on a regular basis. In the WFO Hydrologic Forecast
System (WHFS) implementation, this task is part of the purges performed by the purge_files
script, which typically runs every 4 hours using the UNIX crontab feature.

The IHFS data tables that contain the large volume of data posted by the SHEF Decoder are
purged by the db_purge application, which typically runs every 24 hours, and deletes all data
older than a specified time from the appropriate tables.

The SHEF Decoder application is started using a start script, called start_shefdecode. This
script is located in the directory: /awips/hydroapps/shefdecode/bin. The shefdecode is
automatically started when the AWIPS data ingest processes are started, and is expected to
run continuously. After times when database maintenance operations are performed, the
start script is used to restart the SHEF Decoder application. Note that the start script
prevents non-designated users from starting the application. Typically, the application can
only be started by the user “oper”.

When the SHEF Decoder first starts, it creates a file called shef_pid.dat in the input directory
defined by the token shef_data_dir and which contains the process id of the application. This
file is read by the start script and the script checks if there is a process currently running that
matches the process identifier read in the file. If so, then the SHEF Decoder is considered to
be currently running, so a new instance of the SHEF Decoder is not started. If not, then the
process id file is assumed to contain a process id that was for a terminated instance of the
SHEF Decoder, so the new instance is permitted to be started. Note that a limitation of this
method is that it will only look on the current machine for a process id match; multiple
instances can be invoked if they are running on different machines. This is a very unstable
situation for the SHEF Decoder and should not be permitted under any circumstances. The
classic symptom of having two decoders processing the same input directory is the
occurrence of numerous file open, file close, and file delete errors.

To stop the SHEF Decoder application, the stop_shefdecode script, located in the same
directory, can be used. Note that if the decoder is processing a file when the stop script is
invoked, it will finish processing the file before shutting down. If the file being processed is
large, this may take a short moment before the program is actually stopped. Stopping the
SHEF Decoder application is necessary before performing certain database maintenance
operations. It is generally only done by system administrators or knowledgeable operators.
As with the start script, the stop script prevents non-designated users from stopping the
application.

16

5.0 SHEF DATA POSTING PROCEDURE

Each product, and the individual data elements within each product, is processed in a manner
discussed in this section. Most of this discussion is in the form of a detailed four-page Logic
diagram given in Appendix A. Although the brief summary below is informative, only the
diagrams provide the complete detail necessary to appreciate all the aspects of the posting
procedure.

In summary, a product has two components: the header information which applies to the
product as a whole, and the individual data records which are each for a given location, valid
time, and SHEF attributes including the physical element, duration, type-source, extremum. In
the case of forecast data, there is also a forecast basis time and probability code. These
SHEF attributes uniquely define the data record and serve as the “key” for the record in the
physical element database tables.

Information derived from the product header, such as the product identifier, are associated
with each record posted into the physical elements tables. Product header information can
also be stored independent of the data records, such as storing the text product itself, and
storing information about the time the product was last received. The number of versions to
keep for a given product identifier is specified in the PurgeProduct table, along with the time
the product was last received. If the number of versions to keep for an identifier is greater
than zero, then the product is posted to the TextProduct table and any older versions are
purged as needed to limit the number retained to the specified number.

After the product header based information is processed, the individual data records are then
processed. Each individual data record is checked to determine whether it should be posted
to the database. Data for undefined stations (or areas) can be ignored, or posted in an
abbreviated form, or can be posted in their entirety. If the station is defined but the specific
SHEF attributes for the station are not defined, the data is similarly ignored, unless the token
shef_load_ingest instructs the SHEF Decoder to permanently define and recognize the SHEF
attributes, in which case the current data are posted. Alternatively, a station can be defined,
but in a way that the posting of its data is explicitly turned off.

Assuming that the data record is to be posted, the data value is checked for quality control
purposes, and if instructed, can be checked for alert/alarm purposes. The data are then
posted to the appropriate table associated with the SHEF physical element and type-source
code of the data. The type-source indicates whether the data is for an observation, forecast,
or other type of data. The quality control operations of the IHFS data processing, including
those operations performed by the SHEF Decoder, are described in a separate document.

If the value is a duplicate value, user specified token values control how the duplicate value is
handled. Also, if the value fails certain quality control tests, then other user instructions
control how the value is posted. If the user instructs alert/alarm checking to be performed,
then if the value exceeds alert/alarm thresholds, the data record is posted to a table
containing only the alert and alarm data, in addition to being posted to the physical element

17

tables. User instructions also control whether the latest observed data is posted.

Posting data to certain tables can result in subsequent operations performed on the data
value by procedures defined within the Informix database definition, outside of the SHEF
Decoder. Informix procedures are initiated by Informix triggers specified for observed height,
discharge, and precipitation data. The trigger “triggers” the procedure anytime a record is
inserted or updated to one of these tables. There is no token available for turning these
triggers off.

If the product contains forecast height or discharge data, then after all the records in the
product are processed, the token shef_load_maxfcst may instruct the SHEF Decoder to
perform some post-processing to determine the maximum values for the station forecast data.

Throughout the entire posting process diagramed on the following pages, errors can occur
which may result in messages written to the product log files. To avoid unnecessary clutter,
the linkages between the log files and respective processes are not show in the diagram.
Also, often when a value is written to a table, it checks for an existing duplicate. The linkage
between the table and the process which checks for the duplicate is not shown in order to
reduce clutter. Only the linkage indicating the actual insert or update of a value to a table is
shown.

Additional information on the IHFS database structure, including a data dictionary and
assorted entity-relationship diagrams are also available as separate documents. The data
flow diagram for the SHEF Decoder is a part of this separate documentation. To allow this
document to be as complete as possible, it is included in Appendix B.

18

6.0 NEW FEATURES IN AWIPS RELEASE 5.0

A number of new features have been added to the SHEF Decoder in AWIPS Release 5.0.
These include the addition of new fields to some of the database tables into which the data
are inserted, and include broad functional areas such as quality control, alert/alarm
monitoring, and performance logging.

WHFS Release Notes for AWIPS Release 5.0 discuss the changes implemented in the IHFS
database and its associated software. A brief summary of the changes that apply to the SHEF
Decoder application are given below.

The following SHEF tokens are new for AWIPS Release 5.0:

! shef_post_baddata - Controls how data that fails the modified quality
control test is posted.

! shef_alertalarm - Controls whether the new alert/alarm feature is
enabled.

! shef_load_maxfcst - Controls whether the new process for determining the
maximum forecast value is performed.

! shef_perflog - Controls whether the new performance logging
feature is enabled.

! shef_procobs - Controls whether processed data, identified by a
SHEF typesource code of P*, is treated as processed
data or treated as if it is observed data.

! shef_post_latest - A new value of VALID_ONLY was added to this
existing token. This setting results in the latest data
being posted to the LatestObsValue table only if it is
not a bad data value.

To support the new features controlled by some of these tokens and to insert more detailed
data into the IHFS database, the following notable database changes were made.

! The ManRejectObs table was replaced by the more general RejectedData table.
! The quality code field in each of the physical element tables has been

restructured and now uses a bit-wise definition, where each bit indicates a
specific attribute of any quality control tests performed on the data. The SHEF
qualifier codes are used to help determine the quality code value for each value.
Four new SHEF qualifier codes are now recognized: G (good), B (bad), P
(passed), M (manual).

! The quality_code field was added to the Latest ObsValue table.
! The DataLimits and LocDataLimits tables have replaced the DefaultRangeCheck

and LocRangeCheck tables, respectively. The new tables contain the expanded
quality control thresholds and the new alert/alarm thresholds.

! A new table, AlertAlarmVal, was added to contain the values which have
exceeded the alert/alarm thresholds.

19

! The RiverStatus table replaces the CurHeight table and contains the latest
observed and maximum forecast stage and discharge values for location-
physical element-type-source combinations.

! The product identifier and time, and the database posting time fields were added
to each of the physical element tables. Also the man_edited field in these tables
was removed because the shef_qual_code is the correct field in which to
indicate this qualifier code.

! The GateDam table was added to handle SHEF N* physical element data.

A-1

APPENDIX A. SHEF DECODER POSTING LOGIC DIAGRAM

B-1

APPENDIX B. SHEF DECODER DATA FLOW DIAGRAM

C-1

APPENDIX C. FORMAT OF PERFORMANCE LOG FILE

The performance log file feature is described in the discussion of the token shef_perflog. This
appendix describes the format of the file. The performance log contains one line per product
and is designed to be both machine readable (it uses CSV format) and human readable (it has
character descriptors strategically placed within the record). Each record has the following
31! fields:

.product identifier

.product time - in mmddhhmmss format

.number of records - total number of records in product

.posting time - total clock time spent posting

.LGI - this literal string identifies the next three fields as being the time
spent accessing the Location, GeoArea, and IngestFilter tables,
respectively.

.Location table - access time

.GeoArea table - access time

.IngestFilter table - access time

.LK - this literal string identifies the next four fields as two sets of two
values each, where the first number is for the LatestObsValue table
and the second is for the ProductLink table

.LatestObsValue table - number of records processed

.ProductLink table - number of records processed

.LatestObsValue table - access time

.ProductLink table - access time

.HPOF - this literal string identifies the next eight fields as two sets of
four values each, where the four values are for the Height,
Precip, Other PE tables (e.g. Discharge, Temperature, etc.),
and Forecast PE (i.e. FcstHeight, FcstDischarge,
FcstPrecip, FcstTemperature) tables, respectively

.Height table - number of records processed

.Precip table - number of records processed

.Other observed PE tables - number of records processed

.Forecast PE tables - number of records processed

.Height table - access time

.Precip table - access time

.Other observed PE tables - access time

.Forecast PE tables - access time

.OdFdU - this literal string identifies the next eight fields as a set of
five record count value, followed by three elapsed time
values

.ObsValue table - number of inserts

.ObsValue table Duplicate - number of updates

.FcstValue table - number of inserts

C-2

.FcstValue table Duplicate - number of updates

.UnkStn/UnkStnValue - number of records processed, for the applicable table

.ObsValue - access time

.FcstValue - access time

.UnkStn/UnkStnValue - access time

All times are given as elapsed time in seconds. A sample log record (ignore the
word wrap) is:

KTSARR4TUL,1104160423,210,15.04,LGI,2.96,0.00,2.73,LK,97,8,4.17,0.24,HPOF,90,80,16,
0,2.28,1.89,0.29,0.00,OdFdU,0,0,0,0,2,0.00,0.00,0.07

In this example with 210 total records, the filtering operation (Location and IngestFilter) took
5.69 (=2.96+2.73) seconds, posting to LatestObsValue and ProductLink took 4.17 and 0.24
seconds, posting to the PE tables took 4.46 seconds (=2.28+1.89+.29), and the UnkStn table
took .07 seconds. These account for 14.63 of the total 15.04 seconds. Note that there is no
posting to the ObsValue or FcstValue tables, so of course these counts and elapsed times are
0.

The CSV format of the file facilitates the development of scripts that can analyze the data and
provide summary information. These scripts can be written to interpret the data in an almost
unlimited number of ways. Below is an awk script that reads a given performance log file and
for each product that is processed, writes the product identifier, the number of records in the
product, the time spent processing the product, and the processing rate given in units of
seconds per record.

#!/bin/awk -f
BEGIN {printf(" PRODUCT-ID NUM TIME TIM/NUM\n");
sum3=0;
sum4=0
prods=0
FS=","}
{prods++
sum3=sum3+$3;
sum4=sum4+$4;
printf("%15s %4d %6.2f %5.3f\n", $1, $3, $4, $4/$3) }
END { print "Total Records=", sum3, "Total Time=",sum4, "Total Products=",prods;
 print "Avg. sec/prod=",sum4/prods,"Avg sec/rec="sum4/sum3}

